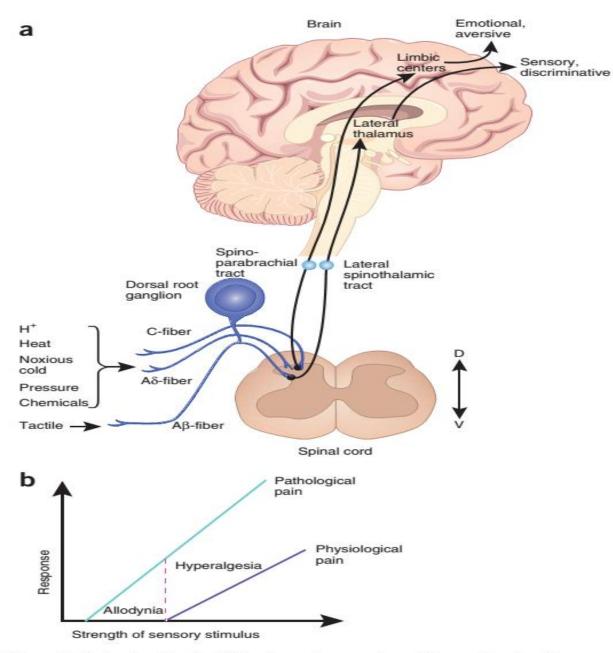
OPIOID-INDUCED HYPERALGESIA

Department of Anesthesiology


DEFINITION

• Pain

"Unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage."

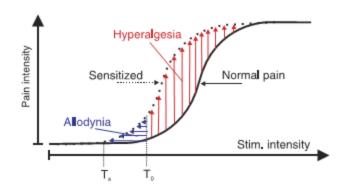
1979 - The International Association for the Study of Pain (IASP)

PAIN PATHWAY

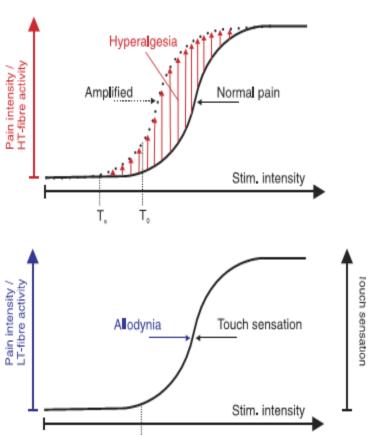
<u>Nat Med.</u> 2010 Nov;16(11):1258-66.

Figure 1 Pain circuits. (a,b) A schematic overview of the main circuits mediating physiological pain (a) and some manifestations of chronic pain (b).

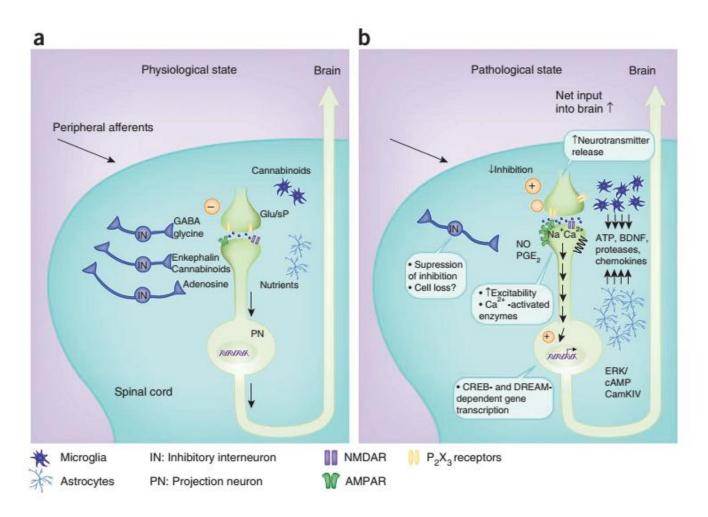
DEFINITION


• Hyperalgesia:

"a state of increased intensity of pain sensation induced by either noxious or ordinarily non-noxious stimulation of peripheral tissue"

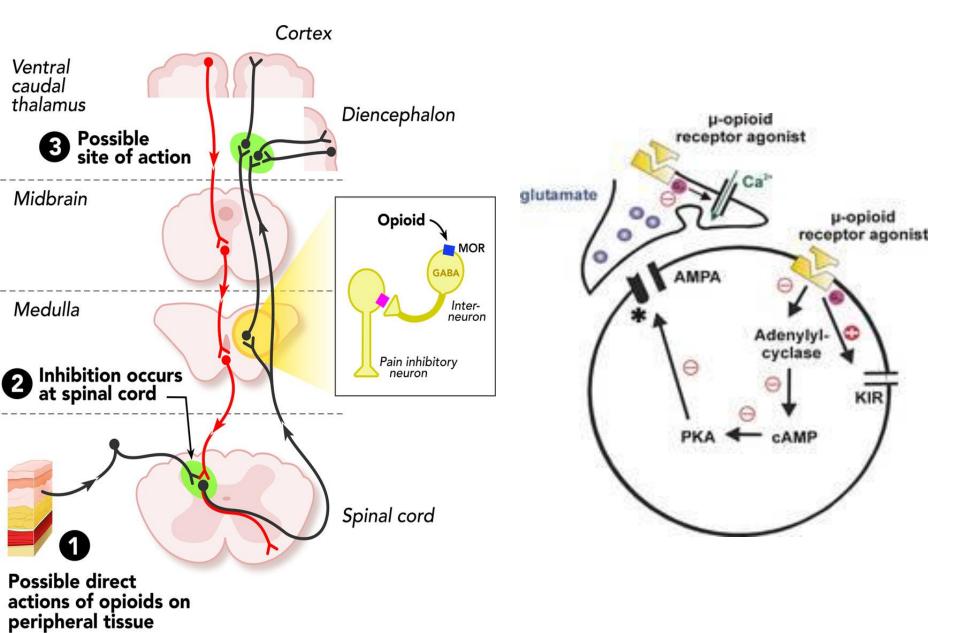

Hardy JD et al J Clin Invest 29: 115–140, 1950

Hyperalgesia is increased pain from a stimulus that normally provokes pain


2008 - The International Association for the Study of Pain (IASP)

MECHANISM OF HYPERALGESIA

Nat Med. 2010 Nov;16(11):1258-66.


DEFINITION

Opioid-induced hyperalgesia (OIH) is the increased sensitivity to pain caused by exposure to opioids.

Lancet Neurol. 2014 Sep;13(9):924-35

Mechanism of OIH is still unclear but supposed multifactorial.

Mechanism of action

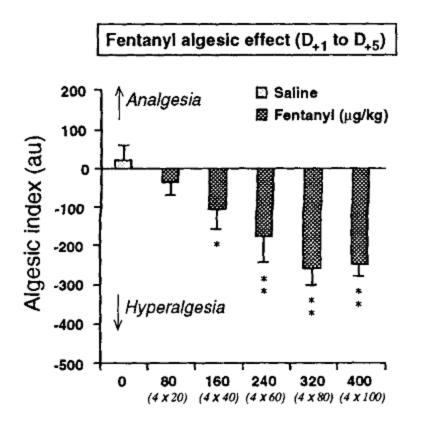
MECHANISM OF OIH

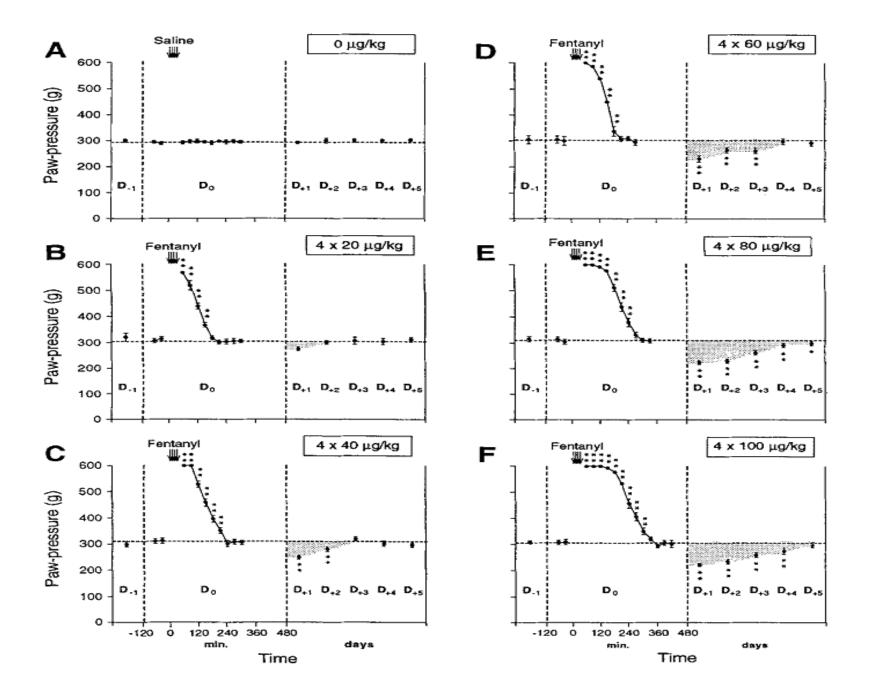
- 1. NMDA receptor activation: opioids possess agonistic effect on the NMDA receptors in the spinal cord
- 2. Spinal dynorphin: endogenous opioid –activate the kappa opioid receptor and to NMDA receptor => spinal excitatory neuropeptides
- **3. Descending facilitation**: chronic morphine exposure increases the number of the On-cells and promotes pain sensation via enhanced sensitization of the On-cells to painful stimuli
- **4. Decreased reuptake of nociceptive neurotransmitters** such as substance P and glutamate from the afferent fibers in the spinal cord and the increased responsiveness of the spinal neurons to such transmitters after chronic opioid intake

From: Opioid-induced Hyperalgesia: A Qualitative Systematic Review Anesthes. 2006;104(3):570-587.

Investigator(s), yr	Reference	Animal	Route	Drug	Nociceptive Test	Mechanism(s) Explored
Aley and Levine, 1995	50	Rat	ID	DAMGO	Mechanical	
Aley and Levine, 1997	51	Bat	ID	DAMGO	Mechanical	AC, calcium, PKC
Aley and Levine, 1997	52	Rat	ID	DAMGO	Mechanical	PKC
Aley and Levine, 1997	53	Bat	iD	DAMGO	Mechanical	1110
Arts et al., 1991	54	Mouse	ICV	Morphine	Thermal	Dynorphin
Bederson et al., 1990	142	Rat	IV	Morphine	Thermal	RVM (on cell/off cell activity)
Bie et al., 2003	143	Rat	IV	Morphine	Thermal	NRM (a1-adrenergic receptor
Bie, 2003	144	Rat	IP	Morphine	Thermal	NRM (k-opioid receptor)
Burdin et al., 1992	145	Rat	PAG	Morphine	Electrical	PAG (opioid modulation)
Celerier et al., 1999	38	Rat	SC	Morphine Fentanyl	Mechanical	NMDA receptor
Celerier et al., 2000	43	Rat	SC	Fentanyl	Mechanical	NMDA receptor
Celerier et al., 2001	37	Rat	SC	Heroin	Mechanical	NMDA receptor
Celerier et al., 2004	39	Mouse	SC	Fentanyl	Mechanical	PKCy
					Chemical	A. 1.677.40
Christensen and Kayser, 2000	146	Rat	SC	Morphine	Mechanical	
Colpaert et al., 2002	147	Rat	SC	Morphine	Mechanical	
Crain and Shen, 2004	136	Rat	SC	Morphine	Thermal	Neuraminidase/GM1
Davies et al., 2003	49	Mouse	SC	Morphine	Mechanical	ganglioside
Doerr and Kristal, 1991	148	Rat	IP	Morphine	Thermal	Amniotic fluid
Dunbar and Pulai, 1998	60	Rat	IT.	Morphine	Thermal	NMDA receptor
	65	Bat	it		Thermal	
Dunbar et al., 2000				Morphine		Cyclooxygenase
Dunbar and Karamian, 2003	100	Rat	IT	Morphine	Thermal	EAA release, NMDA receptor
Ekblom et al., 1993	149	Rat	IV	Morphine	Thermal	
Galeotti et al., 2002	150	Mouse	Oral	Morphine	Thermal	Caffeine, indomethacin, prochlorperazine
					Mechanical	
Gardell et al., 2002	76	Rat	SC	Morphine	Thermal	Dynorphin
Grilly et al., 1981	151	Bat	SC	Morphine	Electrical	
Grilly et al., 1986	152	Rat	SC	Morphine	Electrical	
Harris et al., 2004	153	Rat	IP	Morphine	Thermal	
Heinzen and Pollack, 2004	154	Rat	IV	Morphine	Electrical	NOS
Hendrie, 1985	137	Rat	Oral	Morphine	Thermal	Adrenocorticotropin
Hendrie, 1989	155	Mouse	IP	Morphine	Thermal	Endogenous opioid system
Hoffmann et al., 1998	156	Rat	SC	Morphine	Thermal	Genetic factors
buki et al., 1997	45	Rat	IT	Morphine	Thermal	NMDA receptor, EAA
Johnston et al., 2004	66	Bat	IT	Morphine	Thermal	Cytokines
	157				Thermal	
Kang et al., 2002		Rat		Fentanyl	Mechanical	Cyclooxygenase activity
Kaplan and Fields, 1991	158	Rat	RVM,	Morphine	Thermal	RVM
Kayan and Mitchell, 1968	159	Cat	SC	Morphine	Electrical	
Kayan et al., 1971	32	Bat	SC	Morphine	Thermal	
Kest <i>et al.</i> , 2002	160	Mouse	SC	Morphine	Thermal	Genetic factors
	55	Rat	ID	DAMGO	Thermal	
Khasar et al., 1995						AC
Kim et al., 1990	161	Rat	IV	Morphine	Thermal	
Kim and Siegel, 2001	162	Rat	IV	Morphine	Thermal	Cholecystokinin
Kissin et al., 2000	163	Rat	IV	Alfentanil	Mechanical	NMDA receptor
Lane et al., 2004	164	Rat	PAG	Morphine	Thermal	PAG
Larcher et al., 1998	165	Rat	SC	Heroin	Mechanical	NMDA receptor
Laulin et al., 1999	40	Rat	SC	Heroin	Mechanical	NMDA receptor
Laulin et al., 2002	42	Bat	SC	Fentanyl	Mechanical	NMDA receptor
Li et al., 2001	36	Bat	SC	Morphine	Thermal, mechanical,	Endogenous opioid system
Li ot u., 2001	30	nat	50		incision	
Li <i>et al.</i> , 2001	46	Mouse	SC	Morphine	Thermal, mechanical,	NMDA, NOS and HO
				Fentanyl	chemical	receptors
Li and Clark, 2002	35	Mouse	SC	Morphine	Thermal, mechanical, IT	Glutamate, substance P
		2020		2.2 2.2	neurotransmitters	
Liang <i>et al.</i> , 2003	73	Mouse	SC	Morphine	Thermal, mechanical	HO system
Manning et al., 1996	166	Rat	SC	Morphine	Thermal	NMDA receptor
Mao et al., 1994	48	Rat	IT	Morphine	Thermal	NMDA receptor, non-NMDA
1 C 1 C 10 C 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2010 (100 (100 and 1			0.253725530330157553	glutamate receptor, PKC
						(continued

Table 3. Animal Studics Reporting Opioid-induced Hyperalgesia during Maintenance and Withdrawal


Copyright © 2017 American Society of Anesthesiologists. All rights reserved.


Anesthesiology 2000; 92:465-72 © 2000 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Long-lasting Hyperalgesia Induced by Fentanyl in Rats

Preventive Effect of Ketamine

Evelyne Célèrier, Ph.D.,* Cyril Rivat, B.S.,* Yan Jun, M.D.,† Jean-Paul Laulin, Ph.D.,‡ Agnès Larcher, Ph.D., Patrick Reynier, M.D., I Guy Simonnet, Ph.D.#

Short-term infusion of the µ-opioid agonist remiferitanil in humans causes hyperalgesia during withdrawal

Martin S. Angst^{a,*}, Wolfgang Koppert^b, Ilka Pahl^b, David J. Clark^{a,c}, Martin Schmelz^d

^aDepartment of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA ^bDepartment of Anesthesiology, University of Erlangen/Nürnberg, D-91054 Erlangen, Germany

anime of the sites of gy, onversity of Enangementation of g, D-7004 Enangen, Oer

^cVeterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA

^dDepartment of Physiology and Experimental Pathophysiology, University of Erlangen/Nürnberg, D-91054 Erlangen, Germany

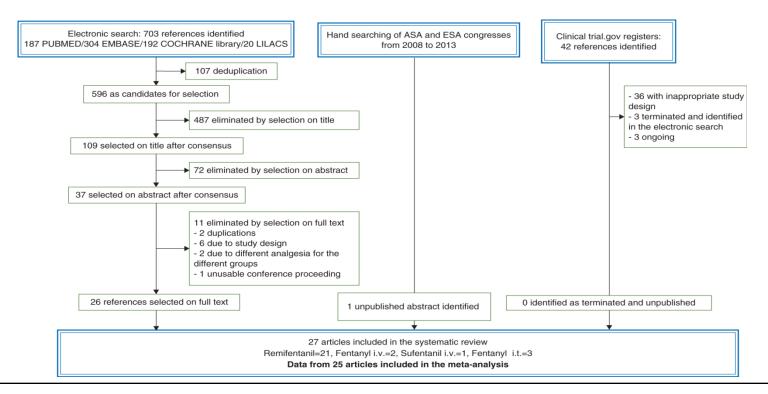
Received 11 April 2003; received in revised form 11 June 2003; accepted 18 June 2003

Table 1

Heat pain (visual analog pain intensity scale; 0-100 mm)

Drug ^a				
Infusion 1	Placebo	Placebo	S-Ketamine	S-Ketamine
Infusion 2	Placebo	Remifentanil	Placebo	Remifentanil
Time ^b				
- 20 min	47 ± 5	49 ± 11	45 ± 11	49 ± 10
(before infusion)				
15 min	45 ± 6	50 ± 12	27 ± 16*	36 ± 18*
(infusion 1)				
65 min	45 ± 5	25 ± 15*	25 ± 16*	$12 \pm 11^*$
(infusion 1 and 2)				
105 min	45 ± 6	$27 \pm 20^*$	26 ± 15*	$14 \pm 14^*$
(infusion 1 and 2)				
155 min	47 ± 6	42 ± 8	31 ± 15*	39 ± 15*
(infusion 1)				

Values are mean \pm SD. *Significant decrease in heat pain compared with saline placebo (two-way RM-ANOVA and Student–Newman–Keuls post hoc pairwise comparison; P < 0.01).


^a Infusion 1 contained either S-ketamine or saline placebo, whereas infusion 2 contained either remifentanil or saline placebo. Infusion 1 started 35 min before infusion 2 and was continued for an additional 50 min after infusion 2 had been stopped.

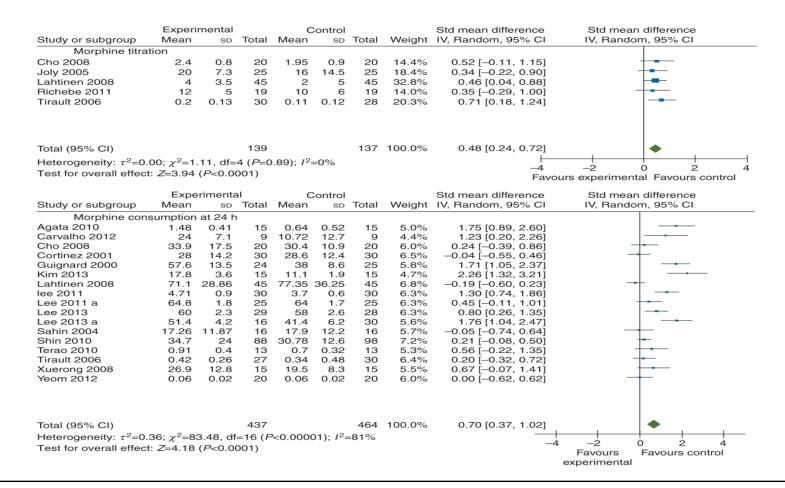
^b Times are given relative to the start of infusion 1.

Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis

D. Fletcher^{1,2,3*} and V. Martinez^{1,2,3}

From: Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis Br J Anaesth. 2014;112(6):991-1004. doi:10.1093/bja/aeu137

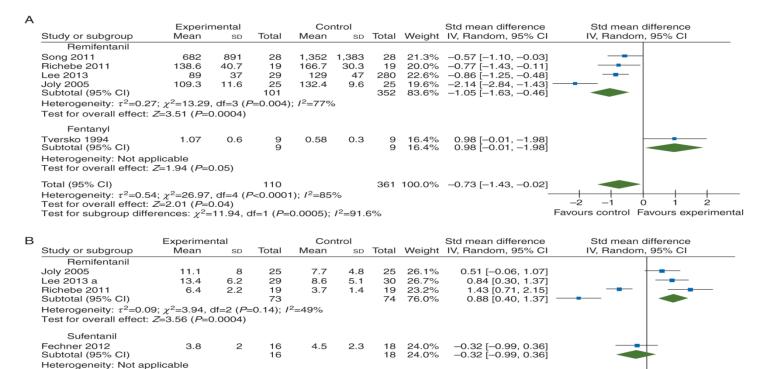
Br J Anaesth | © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com


PAIN INTENSITY

Study or subgro	Experin Sup Mean	mental sp		(Mean	Control SD	Total	Weight		ean diffe andom, 9			n difference Iom, 95% CI		
Pain at 1h Agata 2010 Carvalho 2012 Cho 2008	51.5 7.9	14.7 10	7 15) 9	47.5 10.8 rimental	20.8 10	15 9	7.3% 9.5% Control	4.00) [- 8.89,) [-12.14	16.89]	lean differer	-	ence	
Cortinez 200	Study or sul	bgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, R	andom, 95°	% CI IV, Random, 9	5% CI	
Guignard 20 Lee 2013 Lee 2013 a Ryu 2007	Pain at Agata 2010 Carvalho 20 Cho 2008	012	46 Study or	18 subgroup		40 eriméñta n so		15 Mean	5.6% Control		0 [-6.63, 18 Weight	3.63] Mean difference IV, Random, 95% CI	Mean difference IV, Random, 95% CI	
Shin 2010 Terao 2010 Xuerong 20(Guignard 20 Joly 2005 Lee 2013 Lee 2013 a		Pain Agata 20 Carvalho Cho 2008	2012	19.1 35 21.4	5 13.8	3 10			15 10 20	3.0% 3.3% 2.6%	0.00 [-13.46, 13.46] 13.80 [1.17, 26.43] 1.40 [-13.27, 16.07]		
Yeom 2012	Richebe 20 Ryu 2007 Shin 2010	11	Cooper 2 Fechner 2 Guignard	002 2012 2000	19.8 23 46.1	8 2.9 3 14 1 13.5	9 18 4 16 5 24	15.1 23 39.9	9.9 12 14.2	18 18 25	9.7% 5.5% 6.4%	4.70 [-0.07, 9.47] 0.00 [-8.82, 8.82] 6.20 [-1.56, 13.96]		
Total (95% C Heterogenei Test for over	Terao 2010 Tversko 199 Xuerong 20	94	Joly 2005 Lahtinen Lee 2013 Lee 2013	2008 a	31.5 30.6 22.8 23.8	6 20.1 3 7.5 3 6.8	45 5 29 3 29	29.5 29.1 19.6 13.7	13.4 7.4 4.9	25 45 28 30	4.0% 7.0% 10.9% 12.0%	2.00 [-9.10, 13.10] 1.50 [-5.56, 8.56] 3.20 [-0.67, 7.07] 10.10 [7.07, 13.13]		
	Total (95% (CI	Richebe 2 Ryu 2007 Shin 2010 Terao 2010	7 0	18.7 28.8 34.75 29	6.2 5 24.27	2 30 7 88	16.3 28.6 30.78 25	5.2 12.66	19 30 98 13	3.5% 12.2% 8.6% 2.1%	2.40 [-9.73, 14.53] 0.20 [-2.70, 3.10] 3.97 [-1.69, 9.63] 4.00 [-12.60, 20.60]		
	Heterogene Test for ove	ity	Tversko Xuerong Yeom 20	1994 2008	23.3	3 22 5 14	2 9 4 15	37.5 9	21 19	9 15 20	1.6% 3.6% 4.0%	-14.20 [-34.07, 5.67] -3.00 [-14.94, 8.94] -7.00 [-18.06, 4.06]		
			Total (05				405			429	100.0%	2 01 10 20 5 641		
								Favours Favo	urs					
From: Opioid-ir	nduced hyp	eiaig		aliciilo			α ογοιο	manu	1001000	anu a	iiicia-aiia	ועסו	experimental cont	IOI

Br J Anaesth. 2014;112(6):991-1004. doi:10.1093/bja/aeu137

Br J Anaesth | © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please


MORPHINE CONSUME 24HRS

From: Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis Br J Anaesth. 2014;112(6):991-1004. doi:10.1093/bja/aeu137

Br J Anaesth | © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

PRIMARY AND SECONDARY HYPERALGESIA

From: Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis Br J Anaesth. 2014;112(6):991-1004. doi:10.1093/bja/aeu137

89

Test for overall effect: Z=0.91 (P=0.36)

Test for overall effect: Z=1.87 (P=0.06)

Heterogeneity: $\tau^2=0.33$; $\chi^2=12.98$, df=3 (P=0.005); I²=77%

Test for subgroup differences: $\gamma^2 = 7.91$, df=1 (*P*=0.005); $I^2 = 87.4\%$

Total (95% CI)

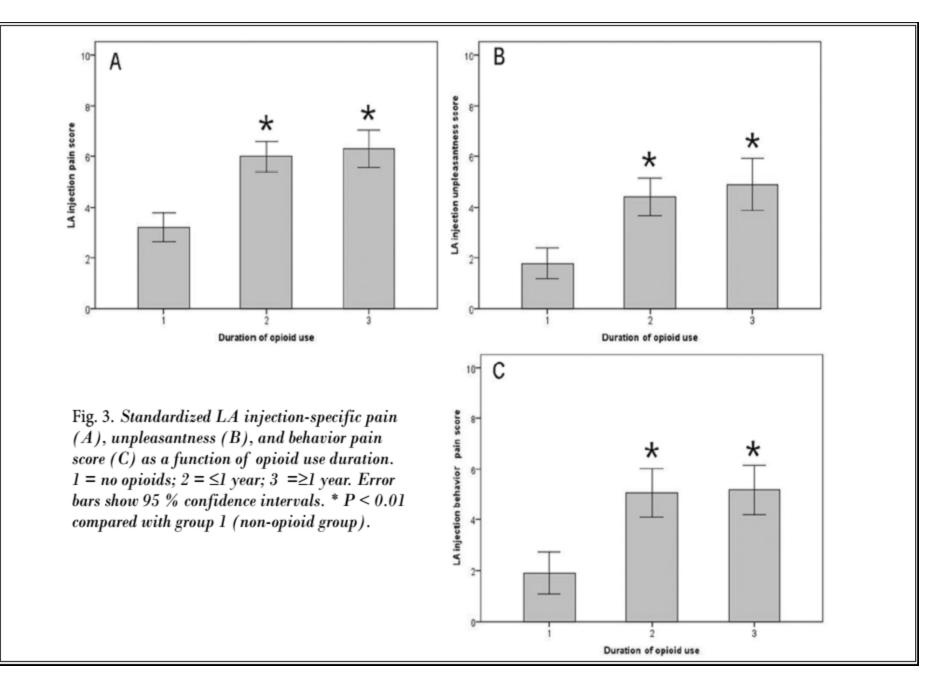
Br J Anaesth | © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

92 100.0%

0.61 [-0.03, 1.26]

-2

-1


Favours control Favours experimental

Prospective Study

High-Dose Daily Opioid Administration and Poor Functional Status Intensify Local Anesthetic Injection Pain in Cancer Patients

Shin Hyung Kim, MD, Duck Mi Yoon, MD, PhD, Kwan Woong Choi, MD, and Kyung Bong Yoon, MD, PhD

Pain Physician 2013; 16:E247-E256

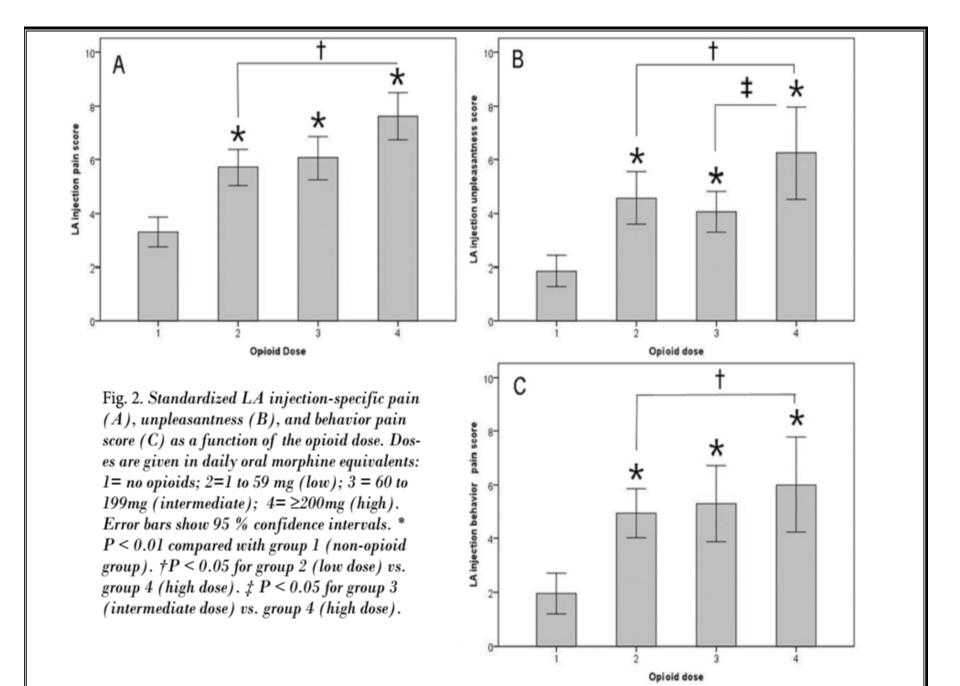


Table 4. Comparison between non-hyperalgesic (<7 NRS) and hyperalgesic (\geq 7 NRS) patients in response to LA injection stimulus in the opioid group.

	Non-hyperalgesia (n=39)	Hyperalgesia (n=23)	P value
Duration of opioid use, months	10.1±11.0 (1 month-3 years)	16.4±17.4 (1 month-6 years)	0.155
<1 year, n	24	11	
≥1 year, n	15	12	
Daily opioid dose, mg	101.3±77.0 (10-300)	298.5±304.6 (20-1080)	0.004
Low (1 to 59 mg) , n	22	3	
Intermediate (60 to 199 mg) , n	14	7	
High (≥200 mg), n	3	13	

CONCLUSION

- Minimize usage of opioids
- Multimodal analgesia: role of regional anesthesia
- Prevent hyperalgesia: ketamin, gabapentin, dexmedetomidine, clonidine

THANK YOU